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A major fraction of the diversity of insects is parasitic, as herbivores, parasitoids or vertebrate ectopara-

sites. Understanding this diversity requires information on the origin of parasitism in various insect groups.

Parasitic lice (Phthiraptera) are the only major group of insects in which all members are permanent para-

sites of birds or mammals. Lice are classified into a single order but are thought to be closely related to, or

derived from, book lice and bark lice (Psocoptera). Here, we use sequences of the nuclear 18S rDNA gene to

investigate the relationships among Phthiraptera and Psocoptera and to identify the origins of parasitism in

this group (termed Psocodea). Maximum-likelihood (ML), Bayesian ML and parsimony analyses of these

data indicate that lice are embedded within the psocopteran infraorder Nanopsocetae, making the order

Psocoptera paraphyletic (i.e. does not contain all descendants of a single common ancestor). Furthermore,

one family of Psocoptera, Liposcelididae, is identified as the sister taxon to the louse suborder Amblycera,

making parasitic lice (Phthiraptera) a polyphyletic order (i.e. descended from two separate ancestors). We

infer from these results that parasitism of vertebrates arose twice independently within Psocodea, once in the

common ancestor of Amblycera and once in the common ancestor of all other parasitic lice.
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1. INTRODUCTION
Parasites make up approximately half the diversity of all life

on Earth (Price 1980). Many groups of insects contain

parasites of some form, ranging from herbivores and para-

sitoids of other insects to parasites of vertebrates. The

parasitic habit is thought to be one of the key innovations

allowing for the tremendous radiation of insects (Farrell

1998; Whitfield 1998). Understanding this diversity

requires information on the origin of parasitism in various

insect groups. Throughout the evolutionary history of

insects, several groups have specialized as parasites of ver-

tebrates, feeding on blood or other tissues of their ver-

tebrate hosts. These groups range from lice (Phthiraptera)

and fleas (Siphonaptera) to some groups of earwigs (Der-

maptera), bugs (Hemiptera) and flies (Diptera). Among

these groups, lice are unique in that they are permanent

parasites of vertebrates, spending their entire life cycle on

the body of the host. For this reason, lice have become a

model system for the study of cophylogenetic relationships

between hosts and parasites (Hafner et al. 1994; Page

1994; Huelsenbeck et al. 2000; Johnson et al. 2001a).

However, the origins of parasitism in lice are only poorly

understood.

Parasitism of vertebrate hosts requires a number of spe-

cialized morphological, physiological and behavioural

adaptations, which have evolved for remaining attached to

the host, escaping host defences and feeding on the host

(Clayton et al. 2003). For example, lice glue their eggs to

the feathers or hairs of the host and have specialized tarsal

claws for hanging on to the host. These adaptations can

result in the extreme specialization of parasites to particular

host species and host microhabitats. For example, species
of parasitic lice are often restricted to a single host species

or subspecies (Price et al. 2003). It is generally assumed

that these specializations to the parasitic habit are so signifi-

cant that parasitism within this insect order could have

evolved only once. However, this hypothesis has not been

rigorously tested.

Identifying the origin of these specialized characteristics

in relation to the origin of parasitism requires knowledge of

the closest relatives of parasitic lice. These relatives are

believed to be among the insect order Psocoptera (book lice

and bark lice), and together these two insect orders are

placed in the group Psocodea. The notion that these two

groups of insects share a common ancestor is supported

by several morphological characters (e.g. a unique water-

vapour uptake system; Lyal 1985) and by limited molecu-

lar data (Whiting et al. 1997; Yoshizawa & Johnson 2003).

Psocoptera are free-living insects, which most often feed on

fungal spores (Mockford 1993). However, there are many

records of various species of Psocoptera in the plumage

of birds and the pelage of mammals, as well as in their

nests (Hicks 1959; Pearlman 1960; Mockford 1967). This

association is believed to be a short-term commensal (non-

parasitic) relationship, which may have given rise to a more

parasitic and permanent association (Hopkins 1949).

Precisely identifying the closest relatives of lice has

proved difficult. Lice have a very simplified body form as a

result of their parasitic habits, being wingless and dorso-

ventrally flattened. Consequently, it is difficult to identify

morphological similarities between lice and potential rela-

tives among the Psocoptera. Kim & Ludwig (1982) sug-

gested that lice were derived from extinct ancestors of

Psocoptera in the Carboniferous or Permian period. By

contrast, Lyal (1985) provided morphological evidence

that lice were derived from within the Psocoptera, possibly
#2004 The Royal Society
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as recently as the Cretaceous, being the closest relative of a

single family, Liposcelididae.

This controversy can potentially be resolved using inde-

pendent molecular data. Previous molecular work with

limited taxon sampling used mitochondrial 12S and 16S

rDNA sequences to evaluate the phylogenetic position of

lice (Yoshizawa & Johnson 2003). Although this study did

support a close relationship between Liposcelididae and

lice, rendering Psocoptera paraphyletic, there was little res-

olution among the major groups of lice or with regard to

the monophyly of parasitic lice. One limitation of these

data is that 12S and 16S mitochondrial genes generally

evolve at a substantially elevated rate in lice and Liposceli-

didae (Johnson et al. 2003; Yoshizawa & Johnson 2003)

and have a highly variable secondary structure (Page et al.

2002) making phylogenetic reconstruction at deep taxo-

nomic levels extremely difficult. More slowly evolving

nuclear genes have more potential to resolve these deep

phylogenetic relationships.

The goal of the present study was to reconstruct the

phylogenetic relationships among the major lineages of

Psocodea using nuclear 18S rDNA sequences. This gene

has been shown to have phylogenetic utility for recovering

deep phylogenetic relationships within and among orders

of insects (Campbell et al. 1995; Whiting et al. 1997). We

sampled all major groups within Psocoptera and Phthir-

aptera and included 145 species in our study. Using trees

derived from phylogenetic analysis of these data, we

address three main questions: (i) is paraphyly of Pso-

coptera also supported by a more slowly evolving nuclear

gene; (ii) what are the closest living relatives to parasitic

lice; and (iii) how many times has parasitism evolved

within Psocodea (i.e. do parasitic lice form a mono-

phyletic group)?
2. MATERIAL ANDMETHODS
In this study, we sampled 21 species of parasitic lice (Phthir-

aptera) and 113 species of book lice and bark lice (Psocoptera) for

the ingroup (see electronic Appendix A). For parasitic lice we

sampled each of the four suborders (Lyal 1985): chewing lice in

the suborders Amblycera (nine species), Ischnocera (six species)

and Rhynchophthirina (one species) and sucking lice in the sub-

order Anoplura (five species). We sampled multiple representa-

tives of each of the three psocopteran suborders (Lienhard &

Smithers 2002) in rough proportion to their family-level diversity:

Trogiomorpha (11 species), Troctomorpha (19 species) and

Psocomorpha (83 species). The group Psocodea is placed within a

group of hemimetabolous insects, the hemipteroid assemblage

(Paraneoptera) (Yoshizawa & Saigusa 2001). Thus, for outgroup

sampling we included representatives of the two other orders in

this group: Hemiptera (true bugs and allies) and Thysanoptera

(thrips). This group of insects is thought to be the sister taxon of

holometabolous insects (Whiting et al. 1997), so we used

members of this group as a more distant outgroup (see electronic

Appendix A).

We extracted DNA from individual specimens and prepared

vouchers as previously described for these insects (Johnson et al.

2001b; Johnson & Mockford 2003). PCR was used to amplify the

18S rDNA gene in three fragments using the primer combinations

Ns1–Ns2a (Barker et al. 2003), 18Sai–18Sbi (Whiting et al. 1997)

and Ns5a–Ns8 (Barker et al. 2003). In some cases, we redesigned

primers for specific groups of Psocoptera, and these primers were
Proc. R. Soc. Lond. B (2004)
substituted as follows: Ns8P for Psocoptera except Nanopsocetae

(50-TACTTCCTCTAAACGATCAAG-30), Ns5aP2 for Psoco-

morpha (50-TGAAACTTAAAGGAATTGACGGAAA-30) and

Ns2P for Peripsocidae and Epipsocidae (50-CGCGGCTGCTG

GCACCAGACTTTTCC-30). PCR products were purified and

sequenced as described by Johnson et al. (2001b). Sequences

for some species of lice had been previously published (Johnson &

Whiting 2002; Barker et al. 2003) and were obtained from

GenBank along with sequences for many of the outgroup taxa (see

electronic Appendix A).

Across this diverse group of insects there are many regions of

insertions and deletions within the secondary structure of the 18S

rRNA gene. We used two approaches to align these sequences.

First, CLUSTALX (Thompson et al. 1997) was used with a gap :

gap–extension cost of 10 : 1. To test the sensitivity of the analysis

to the method of alignment, we manually constructed a second

alignment based on rRNA secondary structure. A secondary-

structure model for Drosophila melanogaster (Cannone et al. 2002)

was used as a guide for the initial alignment and as a benchmark

for determining the degree of secondary-structure variation.

Both the CLUSTAL and secondary-structure alignments with

secondary-structure annotation following Wuyts et al. (2000), are

available electronically from http://darwin.zoology.gla.ac.uk/

~vsmith/papers/psocodea/. For the analysis of each alignment,

exclusion sets were generated, which differed in their level of

sequence conservation. For the CLUSTAL alignment, only con-

served sequence blocks were included, and these generally corre-

spond to stem regions. For the secondary-structure alignment,

the most conservative alignment preserved stem regions, but very

little loop sequence. We also generated a second, less conserva-

tive, exclusion set that preserved a greater proportion of the loop

regions that were reasonably aligned.

For each alignment and exclusion set we used several different

analytical techniques for reconstructing phylogenetic relation-

ships. First, we used unordered equally weighted parsimony in

heuristic searches (maxtrees unconstrained) with tree bisection–

reconnection (TBR) branch swapping in PAUP� (Swofford

2001). The number of trees found by this search for the CLUSTAL

alignment exceeded computational memory capacity, so we

ended the search when this limit was reached (426 531 trees). We

also bootstrapped these datasets and searched under a parsimony

criterion using 100 replicates (maxtrees of 1000). As a second

analytical technique, we used maximum likelihood (ML). To

determine the simplest model that could not be rejected in favour

of a more complex model, we used a series of nested likelihood

ratio tests as implemented in MODELTEST (Posada & Crandall

1998). We used the model identified by MODELTEST in a heuristic

ML search with TBR branch swapping and a neighbour-joining

tree as a starting tree using PAUP�, and performed bootstrapping

with 100 replicates and nearest-neighbour interchange branch

swapping. To assess more fully support measures for each node,

we conducted an ML analysis using a Bayesian optimality cri-

terion with a Markov chain Monte Carlo (MCMC) search strat-

egy using MRBAYES v. 3.0 (Huelsenbeck & Ronquist 2001). For

each alignment and exclusion set, we ran four chains for

10 000 000 generations and sampled every 1000 generations. For

these analyses, the ML score of the trees was generally stable after

200 000 generations, so we discarded the first 200 trees as burn-

in. We computed a 50% majority rule consensus of the remaining

9800 trees to estimate the posterior probability for nodes in the

tree. Because not all parameters in a MCMC Bayesian search

burn in at the same time (Huelsenbeck et al. 2002), we also exam-

ined the 2000 sampled trees from the final 2 000 000 generations
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to evaluate the stability of posterior probability values for nodes of

interest. Datasets and trees are deposited in TREEBASE (http://

www.treebase.org/).

To evaluate whether there is support for the monophyly of para-

sitic lice (Phthiraptera), we used parametric bootstrapping as

implemented by the SOWH test (Swofford et al. 1996; Goldman

et al. 2000). The SOWH test simulates sequence evolution over

the optimal ML tree and over the most likely tree recovered with a

particular node constrained (in this case louse monophyly). These

simulated datasets are then analysed using full ML searches, and

the distribution of differences in likelihood scores between the

constrained and unconstrained trees is computed. The difference

in these scores using the real data is compared with this simulated

distribution to calculate a p-value. Non-parametric tests of mono-

phyly, such as the Kishino–Hasegawa (Kishino & Hasegawa

1989) and Shimodaira–Hasegawa (SH) (Shimodaira & Hasegawa

1999) tests, have been shown to have serious biases (Shimodaira

2002) and thus do not perform well as tests of clade monophyly

(Goldman et al. 2000). Unfortunately the computational com-

plexity of the SOWH test, involving a full ML analysis of simu-

lated datasets, is too high to conduct this test using the entire set of

145 species. Therefore, we subsampled taxa within the clades of

interest (one species of Rhynchophthirina and two species from

each other louse suborder, plus various members of the Pso-

coptera; see figure 1 and electronic Appendix A). We used the

program SEQ-GEN (Rambaut & Grassly 1997) to generate the

sequence data and PAUP� to perform the likelihood searches (see

description by Goldman et al. (2000)). For comparison with the

SOWH test, we also used the program CONSEL (Shimodaira &

Hasegawa 2001) to perform the relatively conservative SH and

approximately unbiased (AU) tests (Shimodaira 2002) on the

same taxon set.
3. RESULTS
As previously reported for lice (Barker et al. 2003), the 18S

gene has a large hypervariable insertion region ranging

from 59–808 bp, corresponding to section V4, sensu Wuyts

et al. (2000). This and other insertion regions were difficult

to align and were therefore excluded from our analyses.

Despite these problems, the insect model of secondary

structure for the 18S gene (Wuyts et al. 2000) was identifi-

able in all sequences, and all sequences could be readily

aligned according to this model.

Parsimony analysis of the CLUSTAL alignment (1696

included characters) produced 426 531 most parsimonious

trees (length of 3727; retention index of 0.747). The con-

sensus of these trees was generally similar to those pro-

duced from the most conservative (1949 included

characters; 4172 trees; length of 6429; retention index of

0.704) and least conservative (2045 included characters;

2104 trees; length of 6911; retention index of 0.699)

inclusion sets of the secondary-structure-based alignment.

Neither Psocoptera nor Phthiraptera were monophyletic in

these trees (see also figure 1), and in all cases the pso-

copteran family Liposcelididae was sister to the phthir-

apteran suborder Amblycera.

Likelihood ratio tests indicated that a model incorporat-

ing two transition rates and a single transversion rate,

unequal base frequencies, invariant sites and rate hetero-

geneity according to a gamma distribution (TrN þ I þ G)

had a significantly higher likelihood than simpler models.

ML analysis of the CLUSTAL alignment produced a single
Proc. R. Soc. Lond. B (2004)
tree (figure 1). This tree also recovered a sister relationship

between Liposcelididae and Amblycera, with bootstrap

support of 82%. In most respects this tree was very similar

to that generated by parsimony analyses. Other clades

corresponding to traditional classification received high

support. The monophylies of Psocodea, Psocomorpha,

Trogiomorpha, Amblycera and Anoplura were all recov-

ered in more than 90% of bootstrap replicates, indicating

that the 18S gene contains a substantial phylogenetic

signal for deep relationships within the Psocodea. Bayesian

analysis of this alignment produced a consensus tree nearly

identical to that produced by ML analysis (figure 1). The

sister relationship between Amblycera and Liposcelididae

was recovered in 100% of trees from the Bayesian search.

In fact, a tree with louse monophyly was not among the

9800 trees sampled from the final 9 800 000 generations of

the Bayesian chain. Support for various weakly supported

nodes in the Bayesian tree generally increased substantially

from a burn-in of 200 trees (200 000 generations) to 8000

trees (8 000 000 generations), indicating that basing a

burn-in on only the likelihood score may not be adequate

for large datasets (Huelsenbeck et al. 2002). For example,

the Bayesian posterior probability for the monophyly of

Ischnocera increased from 87% with a 200 000 generation

burn-in to 98% with an 8 000 000 generation burn-in.

Similarly, monophyly of a clade containing all Nanopsoce-

tae (Liposcelididae, Pachytroctidae and Sphaeropsocidae)

plus Phthiraptera increased from 76% to 99% when only

the 2000 trees from the final 2 000 000 generations were

included in the consensus.

The results of likelihood and Bayesian analyses of the

secondary-structure-based alignments were also similar to

the CLUSTAL alignments. None of these analyses supported

the monophyly of Phthiraptera or Psocoptera. In the

Bayesian analyses of the less conservative alignment,

Pachytroctes, a member of Pachytroctidae, came near the

outgroup Hemiptera, whereas all other analyses put it as

sister to Peritroctes, another member of the subfamily

Pachytroctinae. Pachytroctes contained several regions of

insertions within loops, so it is likely that these are poorly

aligned and their inclusion in the less conservative dataset

was problematic for the analyses.

For the reduced taxon set (see figure 1 and electronic

Appendix A), the difference in likelihood score between

the monophyly-of-Phthiraptera constrained and uncon-

strained was 12.2. This difference was highly significant

using the parametric bootstrapping method of the SOWH

test ( p < 0:01). The relatively conservative SH and AU

tests were also significant ( p ¼ 0:046 and p ¼ 0:041,

respectively). These results indicated that monophyly of

Phthiraptera could be rejected as significantly less likely

with these data.

4. DISCUSSION
Comprehensive analyses of nuclear 18S rDNA sequences

for 21 species of parasitic lice (Phthiraptera) and 113

species of book and bark lice (Psocoptera) do not support

monophyly of either group. Although the paraphyly of

Psocoptera has been suggested previously (Lyal 1985;

Yoshizawa & Johnson 2003), the polyphyly of Phthiraptera

has not. These phylogenetic results indicate that parasitism

evolved twice independently in Psocodea, once in the com-

mon ancestor of Amblycera and once in the common
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ancestor of all other lice (figure 1). This scenario is more

parsimonious than a single origin and multiple losses

(three) of parasitism, and it is also more plausible because

multiple losses of parasitism would require the re-evolution

of flight within the Pachytroctidae and Liposcelididae

(although this might be possible in some insect groups;

Whiting et al. 2003). In comparison with other major

groups of vertebrate ectoparasites, parasitism evolved only

once in fleas (Whiting 2002), whereas there are several ori-

gins of parasitism in mites (Proctor & Owens 2000). The

two origins of parasitism in lice indicate that the morpho-

logical characteristics associated with parasitism are con-

vergent.

In our phylogenetic analyses, lice were divided into two

well-supported clades. The first comprises the suborder

Amblycera, from which we sampled a diversity of families.

The second clade comprises the suborders Ischnocera,

Anoplura and Rhynchophthirina. The book louse family

Liposcelididae is consistently recovered as the sister taxon

of Amblycera and these taxa are further separated from

other lice by members of the Pachytroctidae (figure 1).

Pachytroctidae and Liposcelididae, together with Sphaer-

opsocidae, are members of the infraorder Nanopsocetae

(suborder Troctomorpha), and this group consistently

forms a clade with lice. Because members of both of the

identified clades of lice parasitize both birds and mammals,

it is currently not possible to identify the ancestral host of

each clade (bird or mammal). However, more detailed

sampling within each louse clade may allow the ancestral

host to be reconstructed for each group.

Given the unexpected nature of these results, it is impor-

tant to evaluate their robustness to the method of analysis

and with measures of support. The polyphyly of lice was

identified using two different alignment methods and three

methods of analysis (parsimony, ML and Bayesian ML). In

addition, the sister relationship of Amblycera and Liposce-

lididae received very strong support from the Bayesian

analysis of the CLUSTAL alignment (100%), although sup-

port was weaker using other measures. We further tested

the polyphyly of lice using the SOWH test and convincingly

rejected louse monophyly using this parametric bootstrap

technique. We recognize that the 18S gene constitutes a

single linkage group and thus represents a gene tree. How-

ever, there is very high support for many traditionally

recognized groups within Psocoptera and Phthiraptera,

indicating that this gene has substantial signal for resolving

phylogenetic relationships within these groups. For

example, monophylies of the group Psocodea, suborders

Trogiomorpha, Psocomorpha, Amblycera and Anoplura

and infraorders Caeciliusetae and Psocetae all received

ML bootstrap supports of between 90% and 100%. In

addition, a sister relationship between Rhynchophthirina

and Anoplura was supported in 100% of bootstrap repli-

cates, and this relationship has been previously identified

on the basis of morphology (Lyal 1985) and molecular

analyses (Johnson & Whiting 2002; Barker et al. 2003).

Given these observations, it seems unlikely that the consist-

ently recovered polyphyly of Phthiraptera is a spurious

result.

Given the novel result recovered by our analyses, an

examination of the previous support for louse monophyly is

warranted. Most morphological apomorphies (13 out of 19

character states) identified in support of the monophyly of
Proc. R. Soc. Lond. B (2004)
lice are loss character states (e.g. reductions of the labial

palpi, antennal flagellum and compound eye), and these

are likely to be strongly linked to the parasitic lifestyle of

lice (Lyal 1985). The six character states identified as gains

potentially supporting the monophyly of lice (Lyal 1985)

are all either (i) shared by at least Liposcelididae and

Pachytroctidae (e.g. dorsoventral compression of the

head), (ii) not consistent within lice (e.g. development of a

lacinial gland), (iii) strongly linked to a parasitic lifestyle

(e.g. egg-cement produced from the vagina), or (iv) not

well studied in Psocoptera (spermatological and embryo-

logical characters). Taken together these characters are

either strongly associated with a parasitic lifestyle or not

particularly informative in this group of insects. An evalu-

ation of other character systems, e.g. genitalic structures, is

needed, and preliminary observations suggest similarities

between Liposcelididae and Amblycera to the exclusion of

other lice (K. Yoshizawa, personal observation), consistent

with the results of the present study.

In summary, we have provided evidence from the 18S

gene that the parasitic lice (Phthiraptera) do not form a

monophyletic group. Rather, lice are polyphyletic, and

parasitism of vertebrates has evolved twice independently

within the Psocodea. To our knowledge, this is the first

modern demonstration that an order of insects is poly-

phyletic. Further work using additional nuclear genes is

needed to resolve further and in more detail the relation-

ships among the major groups of Nanopsocetae and

Phthiraptera. Furthermore, additional data could be used

to estimate the timing of these multiple origins and poten-

tially to identify the ancestral host (mammal or bird, or

some ancestor; Wappler et al. 2004) for each lineage of

parasitic lice.
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